
GPUSPH User Guide

version 5.0 — October 2016

Contents
1 Introduction 2

2 Anatomy of a project apart from the use of SALOME 2

3 Setting up and running the simulation without using the user in-
terface 3
3.1 Case Examples . 6

3.1.1 Framework setup . 8
3.1.2 Generic simulation parameters 11
3.1.3 SPH parameters . 12
3.1.4 Physical parameters . 13
3.1.5 Results parameters . 14

3.2 Building and initializing the particle system 14

4 Running your simulation 18

5 Setting up and running the simulation with the SALOME user in-
terface 18
5.1 Preparing the geometry in GEOM . 18
5.2 Generating the mesh (optional) . 20
5.3 Generating particle files with the Particle preprocessor 21
5.4 Setting up and running the simulation with the GPUSPH solver . . . 21

6 Visualizing the results 22

1

1 Introduction
There are two ways to set up cases for GPUSPH: coding a Case file, or using the
SALOME module GPUSPH solver.
When coding the case file, it is possible to create the geometrical elements using
built-in functions of GPUSPH (only for particle-type boundary conditions at the
moment) or to read particle files generated by the Particle Preprocessor module of
SALOME. Creating a case by hand corresponds to the creation of a new cusource
file, with the associated header (e.g. MyCase.cu and MyCase.h), placing them under
src/problems/user. This folder does not exist by default in GPUSPH, but it is
recognised as a place to be scanned for case sources. Beginners should use one of
the provided sample files in src/problems as a template for their project. There
are two main samples available in the src/problems directory: ProblemExample (for
Lennard–Jones or dynamic boundaries) and CompleteSaExample (for semi-analytical
boundaries).

2 Anatomy of a project apart from the use of SA-
LOME

Below are the steps required to build a new project and run it with GPUSPH, without
using the SALOME graphical interface:

1. in case you choose to read the particle data from a file, create the particle files
using the Particle Preprocessor module, following its documentation available
from Salome or those of the validation document;

2. create MyCase.cu and MyCase.h files in the src/problems/user directory;

3. in the GPUSPH folder, compile the code for your project:

make MyCase

4. execute the test case:

./ MyCase

5. follow the steps described in the section 6 to visualize and post-process the
results.

2

In case you use the SALOME modules to perform the pre-processing and to run the
solver, you need to follow the workflow provided in SALOME:

1. Create the geometry in the GEOM module

2. Set up the parameters for pre-processing in the Particle preprocessor and exe-
cute the pre-processing

3. Set up the GPUSPH simulation parameters in the GPUSPH solver module

4. Generate the GPUSPH source files from the GPUSPH solver interface

5. Compile GPUSPH from the GPUSPH solver interface

6. Execute GPUSPH from the GPUSPH solver interface

7. Follow the steps described in the section 6 to visualize and post-process the
results.

3 Setting up and running the simulation without
using the user interface

As said before, the simulation setup only involves manipulating the .cu and the .h
files of your case in order to specify all its parameters before running GPUSPH.
The structure of a case, is in fact the structure of the .cu file, which could be defined
as follows:

GEOMETRY. As the mesh geometry has previously been created by CRIXUS, we
only have to specify the file containing this information: the .h5sph file.

SIMULATION PARAMETERS. There are several simulation parameters that
need to be specified, concerning the time, the frequency of output writing or
specific SPH parameters.

INITIAL CONDITIONS. We need to specify an initial value for each of the fields
to be implemented on each particle.

BOUNDARY CONDITIONS. Boundary conditions have also to be stated be-
fore running GPUSPH.

3

In the following sections we develop each section to help the readers write the .cu
file in order to build their own simulation.
Creating new cases in GPUSPH is done by creating a new class (whose name matches
the case name) that derives from the Problem class.
As new features are introduced in GPUSPH, at times it becomes necessary to change
the interface (API: Application Programming Interface) of the Problem class to sup-
port them. When the API has to be changed in an incompatible manner, a new
version of Problem will be introduced. To preserve compatibility with existing cases,
the Problem class is versioned, and cases should specify which version they intend to
use. This is achieved by defining PROBLEM_API before the inclusion of the Problem.h
interface header; for example:
#define PROBLEM_API 1
#include " Problem .h"

There are currently two Problem APIs defined: API version 0 corresponds to the
low-level Problem interface available in GPUSPH up to version 4, and API version 1,
corresponding to the high-level interface that was made available experimentally in
GPUSPH version 4. Users are encouraged to rely on API version 1, since version 0
is not guaranteed to be stable.
The high-level Problem interface exposed in API version 1 simplifies much of the
work needed in defining in placing objects and geometries that can be described as
a combination of shape, particle type, filling type and intersection behavior.
New geometries are added to the case with commands of the form [escapeinside=<>]add<Shape>
that take as parameter a GeometryType, a FillType, the reference point location,
and the dimension(s). For example:
// add a boundary cube with corner in the origin. The side lengths are specified
// in the order X, Y, Z
addCube (GT_FIXED_BOUNDARY , FT_BORDER , Point (0, 0, 0), 10, 4, 8);
// add a sphere centered in (5, 2, 4) and radius 1
addSphere (GT_FLUID , FT_SOLID , Point (5, 2, 4), 1);
// remove a smaller sphere inside the fluid sphere
addSphere (GT_FLUID , FT_NOFILL , Point (5, 2, 4), 0.5);

The possible values for the GeometryType are:

GT_FLUID for fluid bodies;

GT_FIXED_BOUNDARY for fixed boundaries such as walls;

GT_OPEN_BOUNDARY for open boundaries (inlets, outlets);

4

GT_FLOATING_BODY for objects whose motions is determined by the inter-
action with the fluid;

GT_MOVING_BODY for objects whose motions is prescribed by the user (as
defined in the moving_bodies_callback function that must be defined in the
test case);

GT_PLANE, GT_DEM special fixed boundaries whose interaction with the
fluid can be described geometrically; this is an internal type and there is no
need to specify it explicitly (addPlane and addDEM handle them automatically);

GT_TESTPOINTS special particles that act as probes; this is an internal type
and there is no need to specify it explicitly (addTestPoint handles them au-
tomatically);

GT_FREE_SURFACE a sepcial set of particles used to describe the free surface
during the initial repacking, if enabled;

The possible values for the FillType are

FT_NOFILL no particles will be created for this geometry;

FT_UNFILL no particles will be created for this geometry, and the geometry will
only be used to cut (by intersection or subtraction) other geometries; this is
needed for planes, to differentiate between their use as geometric boundaries
(FT_NOFILL) and their use to cut other geometries (FT_UNFILL);

FT_SOLID both the boundary and the interior of the geometry will be filled with
particles;

FT_SOLID_BORDERLESS only the interior of the geometry will be filled with
particles;

The Problem API 1 also supports the import of meshes and cloud points as produced
e.g. by the Particle preprocessor using methods such as addSTLMesh, addOBJMesh,
addHD5File and addXYZFile.
It has the added feature of taking care of the setup for floating or moving bodies that
are handled through a dynamics library: Project Chrono. It also takes care of the
open boundaries identification, and their type (pressure driven or velocity driven).
Simple initializations such as hydrostatic density configurations or setting up the
mass for the objects can be automatically performed by this API. More sophisticated
initializations (e.g. as required by multi-fluid simulations) can be coded by the user
by defining a initializeParticles method.

5

3.1 Case Examples
The supplied Case examples are located in the src/problems directory:

AccuracyTest schematic single-fluid dam break case on a flat bottom;

Bubble two-phase flow case, representing the motion of a bubble lighter than the
surrounding fluid;

BuoyancyTest a rectangular tank of still water with a submerged torus that is
released when the problem begins;

DamBreak3D schematic single-fluid dam break case with an obstacle;

DamBreakGate same case as the previous one but the dam break is managed by
a vertically sliding gate;

DynBoundsExample double-periodic channel flow;

InputProblem several problems are included in this one, all based on the semi-
analytical boundaries.

OffshorePile waves propagating in a y-periodic channel and hitting a cylinder;

OilJet oil contained in a tube propelled by a piston towards the top and flowing on
a plate;

OpenChannel channel flow (with y-periodicity or side walls);

Seiche sloshing case;

SolitaryWave solitary wave generated by a piston. Possibility to add cylinders on
the waves path;

Spheric2LJ schematic dam break case on a obstacle (available measurements) –
Lennard–Jones boundary conditions;

Spheric2SA schematic dam break case on a obstacle (available measurements) –
semi-analytical boundary conditions;

StillWater still water case;

DEMExample example of use of a topography file for the geometry;

6

WaveTank wave generation on an inclined bed;

Objects example showing how to handle moving objects;

CompleteSaExample generic example for semi-analytical boundaries;

ProblemExample generic example for dynamic and Lennard–Jones boundaries.

Each of these examples can be run by typing make ProblemName, in the top level
GPUSPH directory. It is recommended that the user try them to ensure everything
checks out in terms of CUDA and GPUSPH.
Some of the problems are described with more details below.
BuoyancyTest includes a rectangular tank of still water with a submerged torus (or
by changing object_type, a cube or sphere) that is released when the problem begins.
As time advances, the torus rises through the water column as it has a density half
that of water and then it reaches the free surface and floats.
The output of BuoyancyTest is written every 0.01 seconds into a file in the directory
tests designated by the problem name and the date and time. The files are in VTU
format that can be read by ParaView. Alternative formats, such as text, can be
chosen by changing the writer in the add_writer command.
ProblemExample shows how a matrix of objects can easily be added to a problem.
The basic problem is a semi-infinite domain with a plane used as a floor (addPlane).
A 4 x 4 array of solid cubes is set-up using the addCube command multiple times.
The GT_FIXED_BOUNDARY (GT=Geometry Type) means that the cubes are solid.
The cubes are also rotated 45 degrees by a rotate command. Then a smaller array
of spheres of fluid are defined. GT_FLUID is used in the addSphere command. Note
for the fluid the setDensityByMass establishes the fluid density.
In DamBreak3D makeUniverseBox(), which has as its arguments two opposite cor-
ners of the project domainthe first corner is the origin. This command sets up the
domain using analytical planes as boundaries. These planes do not require the use of
particles. Water is added to the domain with the addBox() command – note that the
fluid is denoted by GT_FLUID (GT=GeometryType). The fluid behind the dam is 0.4
m deep. A variety of obstacles can be added in front of the dam. As provided, there is
just a single object, but by invoking the model with ./GPUSPH --num_obstacles 3
three obstacles will be in front of the dam. These obstacles can be rotated from their
original position by ./GPUSPH --num_obstacles 3 --rotate_obstacle true
Another run-time option includes --wet true or false, which puts a 0.1m layer
of water around the obstacles (and in front of the dam).
CompleteSaExample is an example using the Semi-Analytical boundary conditions
(SA). This type of boundary condition was chosen in the SETUP_FRAMEWORK, which

7

is a class that contains the various simulation choices. For example it contains
boundary<SA_BOUNDARY> as the choice. This example consists of a tank with a free
surface and a submerged inlet. There is a floating cube as well. The example requires
data files that are available on the www.gpusph.org web site: wget http://www.gpusph.org/downloads/data_files_XCompleteSaExample.tgz
or, in your browser, www.gpusph.org/downloads/data_files_XCompleteSaExample.tgz
The file (data_files_XCompleteSaExample.tgz) is uncompressed in the root GPUSPH
directory. It will create a directory data_files, containing four .h5sph to set up
the fluid and boundaries and one .stl file to define the cube. (In addition there
are five files that were used to generate the input files using Crixus, an open source
pre-processor). The problem is large and will take some time as it involves the semi-
analytical boundaries. There are 122,642 particles in total, of which 56821 are fluid
particles and the rest are boundary and vertex particles.
To write your own example, you can use one of the examples as a template, but
they all have a similar format as ProblemExample. For example, looking at the
file, BuoyancyTest in the directory src/problems, we see that, after the appropri-
ate includes, including BuoyancyTest.h, the example is defined as a child of the
Problem class. Then the setup is done following the structure below.

3.1.1 Framework setup

The SETUP_FRAMEWORK function enables to change the general options of the simula-
tion. The general format is

SETUP_FRAMEWORK (
kernel <WENDLAND >,
formulation <SPH_F1 >,
densitydiffusion <BREZZI >,
rheology <NEWTONIAN >,
turbulence_model <LAMINAR_FLOW >,
computational_visc <KINEMATIC >,
visc_model <MORRIS >,
visc_average <ARITHMETIC >,
boundary <SA_BOUNDARY >,
periodicity < PERIODIC_NONE >,
add_flags < ENABLE_INLET_OUTLET | ENABLE_DENSITY_SUM

| ENABLE_MOVING_BODIES | ENABLE_REPACKING >
);

where any of the options can be omitted to leave the default. The available options
are:

8

www.gpusph.org

kernel for the choice of SPH kernel; possible values:

QUADRATIC
CUBICSPLINE
WENDLAND
GAUSSIAN

formulation for the choice of SPH formulation; possible values:

SPH_F1 standard WCSPH single-fluid formulation;
SPH_F2 WCSPH formulation for multiple fluids;
SPH_GRENIER Grenier’s WCSPH formulation for multiple fluids;

densitydiffusion for the specification of the density diffusion model; possible val-
ues:

DENSITY_DIFFUSION_NONE for no density diffusion
FERRARI
COLAGROSSI
BREZZI

rheology for the rheological model; possible values:

INVISCID no laminar viscous contribution;
NEWTONIAN constant (per-fluid) kinematic viscosity;
BINGHAM Bingham plastic rheology (constant viscosity with a yield strength);
PAPANASTASIOU regularized Bingham plastic;
POWER_LAW power-law rheology (stress proportional to a power of the

strain rate);
HERSCHEL_BULKLEY power-law rheology with a yield strength;
ALEXANDROU regularized Herschel–Bulkley rheology;
DEKEE_TURCOTTE exponential rheology with a yield strength;
ZHU regularized DeKee & Turcotte rheology;

visc_model for the viscous model; possible values:

9

MORRIS from Morris et al., JCP 1997
MONAGHAN from Monaghan & Gingold, JCP 1983
ESPANOL_REVENGA from Español & Revenga, Phys Rev E 2003

visc_average for the viscous averaging operator; possible values:

ARITHMETIC arithmetic mean ((a + b)/2);
HARMONIC harmonic mean (2ab/(a + b));
GEOMETRIC geometric mean (

√
ab);

computationa_visc for the computational viscosity choice; possible values:

KINEMATIC computations are built around the kinematic viscosity (SI
units: m2s−1);

DYNAMIC computations are built around the dynamic viscosity (SI units:
Pa s);

turbulence_model for the specification of the turbulence model; possible values:

LAMINAR_FLOW for no turbulence model;
ARTIFICIAL Monaghan’s artificial viscosity; while strictly speaking not a

turbulence model, it behaves in a similar way and is thus included here;
usually used in combination with the INVISCID rheological model;

SPS sub-particle scale turbulence model;
KEPSILON κ − ε turbulence model;

boundary for the boundary model; possible values:

LJ_BOUNDARY Lennard–Jones
MK_BOUNDARY Monaghan–Kajtar
DYN_BOUNDARY dynamic particles;
SA_BOUNDARY semi-analytical model;

periodicity to denote the directions in which the domain is periodic; possible values:

PERIODIC_NONE no periodicity
PERIODIC_X periodic in the X direction;

10

PERIODIC_Y periodic in the Y direction;
PERIODIC_Z periodic in the Z direction;
PERIODIC_XY periodic in X and Y;
PERIODIC_XZ periodic in X and Z;
PERIODIC_YZ periodic in Y and Z;
PERIODIC_XYZ periodic in all directions;

add_flags can be used to enable individual features, such as support for open
boundaries or adaptive time-stepping; default flags can be disabled with the
disable_flags option; possible values:

ENABLE_DTADAPT adaptive time-stepping (enabled by default);
ENABLE_XSPH XSPH correction;
ENABLE_PLANES support for geometric plane boundaries
ENABLE_DEM support for geometric Digital Elevation Model boundaries;
ENABLE_MOVING_BODIES support for moving boundaries;
ENABLE_INLET_OUTLET support for open boundaries;
ENABLE_WATER_DEPTH computation of water depth at pressure bound-

aries
ENABLE_DENSITY_SUM density sum instead of continuity equation
ENABLE_GAMMA_QUADRATURE numerical quadrature of semi-analytical

gamma
ENABLE_INTERNAL_ENERGY internal energy computation
ENABLE_REPACKING (experimental) repacking feature

3.1.2 Generic simulation parameters

// Initialization of simulation parameters
m_name = " XCompleteSaExample ";
set_deltap (0.02f);
physparams ()->r0 = m_deltap ;
// Set world size and origin.
// HDF5 file loading does not support bounding box
// detection yet

11

const double MARGIN = 0.1;
const double INLET_BOX_LENGTH = 0.25;
// size of the main cube , excluding the
// inlet and any margin
double box_l , box_w , box_h;
box_l = box_w = box_h = 1.0;
// world size
double world_l = box_l + INLET_BOX_LENGTH

+ 2 * MARGIN; // length is 1 (box) + 0.2 (inlet box length)
double world_w = box_w + 2 * MARGIN;
double world_h = box_h + 2 * MARGIN;
m_origin = make_double3 (- INLET_BOX_LENGTH - MARGIN ,

- MARGIN , - MARGIN);
m_size = make_double3 (world_l , world_w ,world_h);
// time parameters
simparams ()-> tend = 40.0;
simparams ()->dt = 0.00004 f;
simparams ()-> dtadaptfactor = 0.3;

• m_name is the problem name.

• deltap is the distance between particles used in the current simulation. For
consistency reasons, it has to be the same that we have set in the INI file for
CRIXUS.

• m_size and m_origin are the size and the origin of the domain (defined in
SALOME in case semi-analytical boundaries are used).

• tend is the time at which the simulation should stop.

• dt is the size of the first time-step or the time-step size if the ENABLE_DTADAPT
flag is not activated.

• dtadaptfactor is the CFL coefficient, usually taken as 0.3.

3.1.3 SPH parameters

// Initialization of SPH parameters
simparams ()-> neiblistsize = 256;
// For SA boundaries , specify the amount of non -vertex neighbours

12

// vs the amount of vertex neighbours
resize_neiblist (192 , 256 -192)
// buildneibs at every iteration
simparams ()-> buildneibsfreq = 1;
// Slightly extend kernel radius for gamma computation
simparams ()-> nlexpansionfactor = 1.1;
// Density diffusion
simparams ()-> densityDiffCoeff = 0.1;

• neiblistsize is simply a limit for the number of neighbors computed in the
SPH method. It allows the user control the amount of calculus done for each
particle at each iteration. If the mesh of the geometry is coherent with deltap,
the maximum neighbor number should not be over 280, so setting this number
to 300 would be a good choice.

• resize_neiblist is a function used for SA boundaries to specify the maximum
amount of non-vertex neighbours (in this case, 192) vs the maximum number
of vertex neighbours per particle (in this case, 256-192).

• buildneibsfreq is the neighbour counting frequency, in terms of number of
time steps.

• nlexpansionfactor is the factor increasing the area where we count the neigh-
bor particles for the computation of γ with SA boundaries.

• densityDiffCoeff is the density diffusion coefficient, which is used to poten-
tiate diffusion dissipation (0 for no extra diffusion, 1 for the maximum)

3.1.4 Physical parameters

physparams ()-> gravity = make_float3 (0.0 , 0.0, -9.81);
size_t water = add_fluid (1000.0);
set_kinematic_visc (0, 1.0e-2f);
set_equation_of_state (water , 7.0f, 50.0f);
enableHydrostaticFilling ();

This specifies the gravity field, the fluid density (through the add_fluid function),
and the equation of state to be used through set_equation_of_state. In this
function, the first argument is the fluid considered, the second one is the exponent in
the equation of state (usually 7), and the third one is the numerical speed of sound.

13

The numerical speed of sound can also be set by specifying reference velocity and
water height:
// Reference quantities for speed of sound computation
setWaterLevel (0.5);
setMaxParticleSpeed (7.0);

An initial hydrostatic pressure is prescribed in the domain. The code automatically
finds out which is the highest particle in the domain, and initializes the pressure
based on that value. To change the water level to be considered in the initialization,
the function setWaterLevel can be used. To disable the hydrostatic initialization,
use:
disableHydrostaticFilling ();

3.1.5 Results parameters

// Drawing and saving times
add_writer (VTKWRITER , 1e-1f);

The writer (for the output data) is chosen with the add_writer command (usually
the VTK writer, which provides files to be read by ParaView). The file writing
frequency (in terms of simulated seconds) can also be specified. That is, in this case,
we will have a VTU file every 0.1 simulated second for example. It is important to
note that, since some simulations could become too large, this frequency is essential
in order to limit the size of the result files.
3.2 Building and initializing the particle system
With the internal GPUSPH geometrical elements:
With DYNAMIC or LENNARD-JONES boundary conditions, the problem geom-
etry and the filling with particles can be done inside GPUSPH. An example of
generation of arrays of cubes and spheres in the computational domain is given
in ProblemExample.cu. The geometrical objects can be added using functions like:
addCube (GT_FIXED_BOUNDARY , FT_BORDER ,

Point(X,Y,Z), cube_size);

The geometry type (GT) may be fluid, fixed boundary, open boundary, floating body,
moving body, plane, and testpoint, as discussed in section 3.
GPUSPH has a variety of geometrical objects that can be used to generate Problems.
The geometrical objects are defined in the src/geometry folder. The Problem API 1
makes it possible to rotate or shift them after they were defined. They can be assigned
a mass and a center of gravity. In two dimensions, the objects (in C++ terms, classes)

14

include Point, Vector, Segment, Rect (rectangle), Circle. In three dimensions, there
are additional objects: Cone, Cube, Cylinder, Sphere and TopoCube. Using these
objects, many types of Problems can be constructed. For the three dimensional case,
the bottom (bathymetry) of the problem domain can be input via a file, using the
TopoCube object and a DEM file.
The Point object is usually used as a three dimensional object containing the location
of a point in three dimensions. All numbers are double precision. Associated with
the Point object are functions that determine distance (or distance squared) of a
point from the origin or the distance from another point.
A Vector object is a three dimensional double precision object of three space coor-
dinates, x,y, and z. Vector has a number of associated and useful functions, such as
Vector.norm, for the length of the vector.
The Cube object is really a parallelepipeds, defined by an origin, given by a Point
object, and three vectors are used to define the size and orientation of the cube.
For example, here is a box that delimits an experimental domain (taken from the
DamBreak3D.cc example), called experiment_box.
experiment_box = Cube(Point(0, 0, 0),Vector(1.6, 0, 0),Vector(0, 0.67, 0), Vector(0,
0, 0.4));
This box has a corner located at the origin of the domain, with (x, y, z) = (0, 0, 0),
and three vectors from this point describe the cube, which happens to be 1.6 m long
in the x direction, 0.67 m long in the y direction, and 0.4 in the z direction.
So far we have only defined the cube experimentbox, we have given it no properties.
For this particular box, which bounds the computational domain, its bottom and
four sides will be set as boundary particles, as we will see later.
Associated with the Cube object are commands to fill the inner part of the box with
particles, or to fill the boundaries as with boundary particles.
The Cylinder object is defined by a point that determines the location of the center
of the disk that forms its base, a vector that defines the radius about the point, and
then another vector that defined the height of the cylinder. The cylinder object also
has fill and FillBorder commands. For example,
jet = Cylinder(Point(0.,0.,0.), Vector(0.5,0.,0.), Vector(0.,0.,1.));
would define a cylinder located at the origin with radius 0.5 and height 1.0 with the
name jet. The Cylinder object can be used to define a cylindrical column of fluid,
using the jet.Fill command for the defined cylinder, jet. The mass of the particles
forming jet is set by jet.SetPartMass function. If the jet was supposed to be a
pipe, the jet.FillBorder, with suitable arguments, would use boundary particles
for the pipe called jet. Two of the arguments (Booleans: true or false) of the method
determine if the cylinder is closed on the bottom or the top.

15

The Sphere object is defined by a point that determines the center of the sphere,
a vector that determines its radius (and equatorial normal), and a vector pointing
to the sphere’s pole. For a sphere, these two vectors have equal magnitude and are
normal to each other. The Sphere object uses the Circle object in layers to create a
sphere.
A TopoCube object is used to define a domain that has the bottom of the cube pro-
vided by a data file. The geometry of the TopoCube is determined the same was as
in the Cube object. The data file has a strict format; for example:

north: 13.2
south: -0.2
east: 43.2
west: 0.54
rows: 134
cols: 432
{data in 134 rows with 432 entries per line; numbers space separated}

The numbers following the compass directions are the length of the domain de-
scribed by the data, in meters. (North and south correspond to the +Y axis and the
-Y axis, while E and W are aligned with the +X and -X directions.) The internal
variables (see problem TestTopo.cc) nsres and ewres are grid resolutions determined
by nsres = (north − south)/(nrows − 1) and ewres = (east − west)/(ncols − 1).
The data file is read using the TopoCube.SetCubeDem function, which is called with
arguments (float H, float *dem, int ncols, int nrows, float nsres, float ewres, bool
interpol), where H is the depth of the cube, *dem points to the array of bathymetric
data in the data file, ncols and nrows are the number of columns and rows in the
dem data set, nsres and ewres is the spacing between the bathymetric data in the
north/south direction and the east/west direction, and interpol (not the police) is
the boolean variable for interpolation. FillBorder will fill a face with particles–the
particular face is determined by face_num, which takes on the values of (0,1,2,3),
for the front face, the right side face, the back face, and the left side face (facing the
-x direction) for a rectangular box.
Other objects can be defined and added to the source directory to allow for additional
flexibility.
Reading particle files:
The fluid initialization performed by the Particle preprocessor and stored in the
H5SPH files can be used by GPUSPH to start the simulation with any type of
boundary conditions. The specification of the file containing the fluid particles occurs

16

with the following statement:

addHDF5File (GT_FLUID , Point (0,0,0),
"./ data_files /MyCase/ my_case .fluid.h5sph",
NULL);

The specification of the file containing the special boundary particles occurs with the
following statement:

// Main container
GeometryID container =
addHDF5File (GT_FIXED_BOUNDARY , Point (0,0,0),

"./ data_files /MyCase/ my_case . boundary .h5sph",
NULL);

disableCollisions (container);

// Inflow boundary
GeometryID inlet =

addHDF5File (GT_OPENBOUNDARY , Point (0,0,0),
"./ data_files / MyProject /0. my_project . boundary .kent1.h5sph",
NULL);

disableCollisions (inlet);

GeometryID cube =
addHDF5File (GT_FLOATING_BODY , Point (0,0,0),
"./ data_files / MyProject /0. my_project . boundary .kent2.h5sph",
"./ data_files / MyProject / MyProject_object_file .stl");

// output forces on the cube
enableFeedback (cube);
// set the cube density
setMassByDensity (cube , 500);

In order to specify whether the open boundary is pressure driven or velocity driven,
the following lines are used:

setVelocityDriven (inlet , 1);
setVelocityDriven (outlet , 0);

Once again the GT (GeometryType) can be fluid, fixed boundary, open boundary,
floating body, moving body, plane, or testpoint, eg. GT_OPENBOUNDARY.

17

4 Running your simulation
To run your simulation you first need to compile GPUSPH for your problem. To do
so, in the GPUSPH folder, run:

make MyProblem

Remark:

• If you are running a multi-node simulation, do not forget to add the option
mpi=1.

• If your are running a simulation with moving objects, do not forget to add the
option chrono=1.

See the installation guide or run make --help for the complete list of compilation
options.

5 Setting up and running the simulation with the
SALOME user interface

In order to start a new project in SALOME, click on File/New. When you save your
project, SALOME creates a file with the .hdf extension, which stores all the geom-
etry elements, meshes and simulation parameters that you design for your project.

5.1 Preparing the geometry in GEOM
The complete SALOME documentation for the GEOM module can be found here:
http://docs.salome-platform.org/7/gui/GEOM/ or from the Salome Help menu.
Designing is easy in SALOME. To start building the geometry elements, click on the
Geometry module. There are 7 types of basic geometrical elements:

1. VERTEX: it can be created by providing its coordinates, by clicking on the
vertex of another geometry element, by using another point as referenceThere
are many ways which are described in the Point Construction window which
appears when we click on Create a point

2. SEGMENT: it can be created providing two points that were previously stated,
or using the intersection of two planar elements.

18

http://docs.salome-platform.org/7/gui/GEOM/

3. WIRE: a wire is just a series of segments. It can be a closed wire or if the end
matches the start, or an open one.

4. FACE: a face is just a limited plane

5. SHELL: a shell is a series of faces. SALOME would consider it a closed shell
when it encloses a volume

6. SOLID: a solid is just a limited part of the 3D space; it can be easily created
on the basis of a closed shell

7. COMPOUND: a compound is just the combination of two or more elements of
different type, merged into one single element

Apart from these basic geometry types, we can find three special types, which are
DIVIDED DISK, DIVIDED CYLINDER, and SMOOTHING SURFACE. Among
these three special types, the most interesting is the smoothing surface, as it is useful
to create 3D surfaces from a point cloud. Finally, we can find auxiliary geometry
elements such as circles, ellipses, arcs, vectors, sketches, polylines, cylinders, cones,
spheres, cubes, torus, disks, T shape pipes, etc.
SALOME makes it possible to import geometries from a wide range of file types:
STL, BREP, STEP,etc. It is possible to import a geometry in STL format (generated
with another 3D modeling software, such as Autocad, SolidWorks, Catia, Blender,
etc.).
Caution: STL files are ASCII or binary files in which geometry is described by
triangles. Each element of an STL file is composed by the 3 coordinates of each 3
vertex of the triangle, and the 3 components of the triangles normal vector. This
means that when we export some geometry elements in STL format, triangles would
be automatically created. When importing this file in SALOME, the geometry is
then composed of triangular faces and the meshing operations to be implemented
afterwards are influenced by this previous and automatic discretization of the geome-
try. This results in bad mesh quality. So when importing geometry on a STL format,
a redesigning of it is necessary in order to obtain a good mesh quality. Meshlab can
be used for this purpose (in particular the Poisson resampler feature).
Other very useful tools of SALOME are the boolean operations on solids. It is
possible to fuse, intersect solid objects, use a solid object as a cutting tool for another
one, etc.
It is also possible to perform operations like rotation, translation, etc. on the geo-
metrical objects.

19

5.2 Generating the mesh (optional)
The complete SALOME documentation for the MESH module can be found here:
http://docs.salome-platform.org/latest/gui/SMESH/index.html or from the
Salome Help menu.
The input files for GPUSPH are meshes of:

• the domain’s fixed boundaries

• the free-surface

• the special boundaries (for moving objects and/or open boundaries)

These meshes must be composed of triangles of homogeneous size over
the domain, otherwise the quality of the GPUSPH results may be af-
fected. The Particle preprocessor will create these meshes, but in case
the obtained discretisation is not satisfactory, it is possible to create the
meshes in the MESH module and define them as input files for the Particle
preprocessor.
In order to access the meshing tools, change from the GEOM module to the MESH
module. To create a mesh from a geometry element, click on Create Mesh, and a
window opens (see Figure 1) in which the following options are available:

• Name: the name of the mesh which is going to be created

• Geometry: the geometry element that we want to mesh

• 3D/2D/1D/0D: its the nature of the mesh that we are going to create, it
automatically chooses the correct one depending on the type of element that
we have specified in Geometry

• Algorithm: is the meshing methods algorithm. Netgen 1D-2D works well for
shell meshing.

• Hypothesis: here we can specify the hypothesis to be used by the algorithm
method. Clicking on the first icon on the right, we can specify the parameters
of the algorithm. See the SALOME documentation for more details about the
options. For example, for the Netgen 1D-2D algorithm, a window opens with
all the options shown in the Figure 2.

The most relevant mesh options with the Netgen 1D-2D algorithm are Max Size and
Minimum Size. It is important to note that SALOME usually respects the Max Size,

20

http://docs.salome-platform.org/latest/gui/SMESH/index.html

Figure 1: Screenshot of the mesh options window in SALOME.

whereas the minimum size is often ignored due to geometry-mesh adaptation prob-
lems. In addition, the minimum size would be always delimited by the characteristic
size of the geometry, that is to say, the minimum length of the faces composing the
shell. Regarding the option Fineness, Fine works usually well. Once we press OK
and then Apply, an element of mesh type will appear in the Object Browser on the
left side of the screen. The icon will appear with an exclamation mark on it: that
means that the mesh has not been computed yet. To do so, we click on the icon
Compute or we just do right click and we select the option Compute. The algorithm
will now begin iterating until a solution has been found. The mesh is then ready to
be used by the Particle preprocessor.

5.3 Generating particle files with the Particle preprocessor
The full user documentation of the Particle preprocessor is available in the Salome
Help menu.

5.4 Setting up and running the simulation with the GPUSPH
solver

The full user documentation of the GPUSPH solver is available in the Salome Help
menu.

21

Figure 2: Screenshot of the Netgen 1D-2D hypothesis window in SALOME.

6 Visualizing the results
The results of the simulation are stored in a directory under tests, named after the
used Problem and the date of execution (e.g. tests/DamBreak3D_2014-6-12T13h23).
Data files (found in a data sub-directory of the specific test directory) are normally
written in VTK Unstructured Grid format (.vtu) and can be visualized with Par-
aView.
The files necessary to hotstart the simulation are also stored in the
tests/MyProject_2014-6-12T13h23/data folder.
The run directories and their content are preserved until manually removed. The
scripts/rmtests auxiliary script can be used to clean up the tests directory.
A tutorial to start using ParaView is available here: http://www.paraview.org/
Wiki/Beginning_ParaView
To open a file, click on the first upper icon on the left. The VTU files are named
as PART_00025.vtu where the number corresponds to the output files numbering.
PARAVIEW allows the user to visualize at the same time all the VTU files, just
clicking on VTUinp.pvd or selecting the all set of PART_..vtu files (see the Figure
3). The set of VTU files can be analyzed as a movie by clicking on the play buttons
at the top of the screen.

22

http://www.paraview.org/Wiki/Beginning_ParaView
http://www.paraview.org/Wiki/Beginning_ParaView

Figure 3: Screenshot of the window for file opening in PARAVIEW.

After selecting the VTUinp.pvd or the desired PART files, a window appears at the
bottom-left part of the screen. Press Apply to confirm the file opening: the set of
particles appears at the center of the screen. When pressing Apply, a window opens
with three main sections: Properties, Display and Information. The second one
enables the user to decide which field should be printed (first tab of the section
Coloring). With the Show option, we can make the color legend appear, and with
the Edit one, we can customize it. Below this section we find a set of options that
enables us to manage the plotting as desired. The Information section provides
information like the total size of the dataset.
Below some useful filters of ParaView are listed. The filters are all available through
the Filters tab at the top of the screen, in the section Alphabetical, or through
shortcuts in the main window.

• Find Data Find data by scalar value makes it possible to select particles on
the basis of the value of their fields. When activating a filter a window opens.
In order to select the particles we want, in that window (see the Figure 4),
we have to set the Find tab on Point in that window. In the left tab we can
choose the desired field, whereas in the right one we can set the value (note
that there are several conditions: >=, <=, =, between, etc.). Once we have
set all the options, we press on Run Selection Query and we will be able to

23

see a table containing all the particles that match the imposed condition. In
addition; we will be able to see these particles on the Layout, colored with the
chosen Selection Color.

Figure 4: Screenshot of the Find Data window in PARAVIEW.

• Clip In order to visualize a section of the domain, since the fields are discrete,
we are obliged to perform a Clip. The Clip window is shown in the Figure 5.
By changing the Clip Type tab into Box, it is possible to set the dimensions
and position of the box. It is important to click on the Inside Out button to
select the particles that are inside the box. Once ready, click on Apply to get
a new Clip object in the Pipeline Browser. You can manipulate it in the same
way as the main dataset. You can also perform clips with planes. Remark:
the Slice option does not work because the flow fields are not continuous. To
make a slice, we currently apply a thin box-type clip to the dataset.

• Other useful filters are the Threshold, Calculator, Scatter Plot, etc.

Saving your results
Save Data You can generate a table in CSV format containing the values of the fields
for each particle for each PART file or filtered dataset. If you click on File/Save Data,

24

Figure 5: Screenshot of the Clip window in PARAVIEW.

a window appears where you can set the name and other options for the result file.
There are many options for the format of the file, but the recommended one is .csv,
as you can visualize it on the Linux LibreOffice Calc or Windows Excel. In addition,
you can change the format of the file to .dat in order to open it with a text editor.
Save State You can save your PARAVIEW postprocessing state in a file by clicking
on File/Save State. The state file is in ascii format so you can edit it with a text
editor. You can also apply it to other datasets than the original one, which is very
useful in order to avoid having to repeatedly perform the same filtering operations.

25

	Introduction
	Anatomy of a project apart from the use of SALOME
	Setting up and running the simulation without using the user interface
	Case Examples
	Framework setup
	Generic simulation parameters
	SPH parameters
	Physical parameters
	Results parameters

	Building and initializing the particle system

	Running your simulation
	Setting up and running the simulation with the SALOME user interface
	Preparing the geometry in GEOM
	Generating the mesh (optional)
	Generating particle files with the Particle preprocessor
	Setting up and running the simulation with the GPUSPH solver

	Visualizing the results

